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I Description of Progress 

A method for calculating the redistribution of resonance radiation in hot, dense 
plasmas is developed by extending the Frequency Fluctuation Model (FFM). This model 
was originally designed as a numerical procedure for the calculation of the spectral shape 
of Stark broadened lines emitted by multi-electron ions and has been particularly useful 
in computations accounting for the ion dynamics effect. The FFM is based on a numerical 
technique that replaces the primitive inhomogeneous Stark component contributions to 
the linear response lineshape with the observable radiative channels. These channels can 
be viewed as equivalent to a system of microfield dressed two-level radiators, the Stark 
dressed transitions (SDT), which emit a set of spectral lines that reproduce the main 
features of the first order radiative properties of the emitter. The mixing of these 
transitions through a stochastic process is equivalent to random fluctuations of the local 
ion microfield. The SDT form the basis for the extension of the FFM to the computation 
of non-linear response functions. The theory of the second order radiative redistribution 
function is reviewed, and examples are given. Recent advances in the computation of the 
radiative properties of complex ions in hot, dense plasmas, made possible by the 
development of the frequency fluctuation model (FFM) [l], have resulted in an adequate 
understanding of the effect of the plasma environment on the emission or absorption 
process and the shape of the associated spectral lines [2]. In addition, the FFM treatment 
of ion field fluctuations, has resulted in line shape calculations that provide good 
diagnostics of the plasma parameters under a wide range of conditions [3,4, 51. The next 
logical step in understanding the radiative properties of hot dense plasmas is to develop 
models for the study of the multi photon response, e.g., the scattering of resonance 
radiation. One motivation for this study is that for lines with a large optical depth there 
remain difficult problems involving radiative transfer. Beyond the simplest assumption 
that the line shape is independent of the radiative redistribution, these problems cannot be 
understood simply through calculations of the one photon absorption or emission 
spectrum, but require the development of a computational ability to treat the scattering of 
near resonant radiation in hot dense plasmas. This means that a theoretical formulation of 
the two photon plasma spectral properties in the presence of a combination of 
homogeneous and inhomogeneous broadening processes must be developed. In the 
following, this will be accomplished by extending *usual linear response formulation 
of the spectral lineshape to the higher order absorpti& and re-emission response function 
that is required for the computation of radiation redistribution. 

Two basic radiative redistribution processes can be considered. The first is the 
straightforward observation of the scattered photons from a plasma subjected to a 
radiation source. A possible experimental observation of this type is the pumping of the 
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ground state of a transition with a source created from the excited state of the same 
transition. This is the technique utilized in the first observations of photopumping in 
high-Z plasmas in which a hot, laser-produced aluminum plasma produced lines from 
He-like ions that were used to pump ground state Fe-like ions in another, spatially 
distinct, but more dense, aluminum plasma [6]. Another example of this process is the 
familiar monochromatic pump-fluorescence experiment. To significantly scatter the 
pumping radiation, in experiments of this type, the target plasma must be prepared so that 
the optical depth is small for the considered transition, e.g., the lower level of the 
transition is well populated. Recent progress has resulted in the development of X-ray 
lasers with wavelengths appropriate for photo-pumping ground state transitions of multi- 
electron ions [7] have sufficient brightness to make-them suitable for use as resonant 
photo-excitation sources [8] in experiments of this type. Since these X-ray lasers are not 
tunable, only ionic transitions that have a near-resonance with specific laser wavelengths 
can be studied. Using tables of transition wavelengths [9], one of the 3d-2p lines of 
fluorine-like magnesium, which at 146.526 8, is separated by only 11 rr& from the 
zirconium 146.5 15 A X-ray laser line, was identified as a possible candidate for an 
experiment, and a preliminary study on the feasibility of this case has been published 
[lOI. 

The second basic process involving radiative redistribution involves cases related 
to radiative transfer. The observation of the modification of the spectrum of radiation 
propagating in a plasma with large optical depth is an example of this type of process. 
This case requires a more general theoretical discussion of the effect of redistribution on 
radiation transport in plasmas near ionic resonances. In addition to the plasma conditions, 
this process strongly depends on the geometry of the experiment. Thus, we cannot 
formulate a general calculation of a typical experiment as was done for the study of the 
feasibility of direct redistribution [lo]. In general, considerations of radiation transport 
give rise to complex problems involving both non-linear mechanisms and resonant 
diffusion in addition to inhomogeneous line broadening. An example involving the 
Balmer alpha transition of hydrogen-like carbon, has been discussed in the context of 
X-ray laser gain studies[ 111. The results presented later for this transition will be limited 
to an examination of the redistribution function for hydrogen like carbon plasma 
conditions and will not address the more complicated radiative transfer issues. 

This paper is devoted to a brief review of lineshape theory in the linear response 
approximation, and an introduction to the FFM approach to the modeling of lineshapes in 
plasmas. This discussion begins with a consideration of the spectral lines emitted by 
complex ions in plasmas. As is well known, the lineshape is determined by the time- 
dependent coupling of the ion with the plasma environment. This plasma-emitter 
interaction, leads to Stark broadening of the spectral lines, and traditionally has been 
considered in the approximation which treats the ef&@ of the electrons on the emitting 
ion in the impact limit while the ionic perturbation is’taken to be quasi-static. In this 
approximation, the time dependence of the perturbation has been eliminated, resulting in 
a spectral line shape that has purely homogeneous and inhomogeneous contributions and 
that is described by a simple sum of independent electron imp’act broadened static 
components. 



Although the electron collisions are often well described by the impact 
approximation, it is well known that a quasi-static treatment of the ion perturbation can 
lead to large errors for plasma conditions that yield substantial ion field fluctuations [ 121. 
To incorporate these time dependent ion perturbation effects into a calculation of the 
spectrum, the FFM model is introduced [13].As a first step, the impact electron, quasi- 
static ion approximation that results in the profile described by an independent sum of 
static Stark components, is taken as a zero order approximation, perturbed by the time 
dependence of the ion interaction. In this formulation the fluctuating ion interaction 
modifies the inhomogeneous ion broadening, by replacing the quasi-static ion field 
interaction by a fluctuating perturbation acting on the homogeneous electron impact 
broadened resonances. In first approximation, this fesults in an enlarged homogeneous 
broadening by the fast electrons and an ionic contribution to the line broadening that is 
only partially inhomogeneous. The associated modification of the lineshape is usually 
referred to as the ion dynamics effect. 

Before modifying the ion perturbation to include the ion dynamics effect, 
however, since the individual Stark components are not separately observable, we replace 
them by a reduced set of observable resonances, the Stark dressed transitions (SDT), or 
equivalently, dressed two-level systems. In this description, the set of independent static 
Stark components that compose the transition in the static ion approximation, is replaced 
by a set of independent SDT that form the same overall spectral profile. This permits a 
simple interpretation of the fluctuation of the inhomogeneous components in the ion 
dynamics effect as being a mixing of the SDT through a stochastic exchange mechanism 
[ 131. Assuming a Markovian exchange process between the SDT, the mixing process can 
cause them to overlap and merge. Comparisons with computer experiments based on a 
full simulation of the plasma indicate that the FFM accurately describes the ion dynamics 
effect [2] for a wide range of plasma conditions. The use of this ion microfield-dressed 
emitter model permits the memory of the original (static) inhomogeneous spectral 
characteristics of the lineshape to be retained throughout the subsequent dynamic 
calculation. 

The modification of the FFM for the computation of the redistribution function is 
presented where the one photon spectral line formalism of the FFM is extended to include 
two photon processes. The ion microfield-dressed emitter representation is used to 
evaluate the second order pump-fluorescence radiative response to obtain a description of 
the frequency dependence of the fluorescence emitted by an ion that has absorbed a 
photon near a spectral resonance. Because the spectral shape of the fluorescence depends 
strongly on the mixing rate induced by the plasma, the ion dynamics effect must be 
included. Therefore, a static model with the associated set of two level transitions without 
exchange, cannot fully describe the response to monochromatic pumping. 

In order to clarify the concepts presented, examples of radiative redistribution 
functions for simple cases are presented. Included is an example of an X-ray laser 
pumped system which illustrates the capability of the mpdel to provide a sensitive 
method for the study of radiative transfer under plasma conditions of partial 
redistribution. That is, in cases where the strong mixing limit is not attained so that the 
mixing of the inhomogeneous spectral line components is not fast enough to produce a 
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completely redistributed line. The complete redistribution limit is the most common 
assumption in redistribution studies and is equivalent to postulating that the scattered 
radiation has the same spectral shape as the absorption line,. More generally, partial 
redistribution results in a fluorescence spectra cqnsisting of a sharp coherent Rayleigh 
peak centered on the frequency of the incident radiation and a redistribution line emitted 
near the resonance frequency. This pattern of coherently scattered and redistributed 
radiation has been observed under a variety of experimental conditions for neutral 
emitters in gases [ 141 or plasmas [ 15, 161. However, until recently, X-ray spectroscopy in 
hot and dense plasmas could not be applied to redistribution measurements with the same 
precision as in the neutral gas domain. X-ray laser pumping could change this situation, 
and provide data of sufficient quality that accurate calculations of radiative transfer in 
dense plasmas could be tested. 

II Theoretical Studies Completed 

The expression for the linear response of a plasma-emitter system to an 
unpolarized monochromatic electromagnetic wave of angular frequency, CO, is determined 
by the response function, G(o), which is the one sided Fourier transform of the bath 
averaged evolution operator of the emitter, U(t), . 

G(o) = $$eiatU(t)dt = (o--L,)-’ 

where, LO is the Liouville operator for the system evolution alone. The lineshape 
function in the radiative dipole approximation is related to the imaginary part of the 
Fourier transformed dipole autocorrelation function. This can be written as a normalized 
Liouville space matrix element of the response function, 

I@) = ImWt(G(@ldp,)), (2) 

where pO is the equilibrium density matrix operator for the active quantum 
system, and d, is the dipole operator for the emitting quantum system. In Liouville space 
notation, ((d’ Id)) = Tr(d+d), where the trace is taken over the sublevels of the two states 
involved in the radiative transition under consideration. The subsequent calculation of the 
pump-fluorescence spectrum will require higher, non-linear response terms that have a. 
simple relation to this function. An average over the polarization is understood in the 
above since unpolarized radiation has been assumed. Polarization effects associated with 
the redistributed radiation will be ignored for simplicity in the following, limiting the 
subsequent development to one dimensional scattew. 

To account for ion dynamics, the microfield ihteraction must be treated as time- 
dependent. This means that if we consider the interaction fluctuations or collisions to be 
random, a stochastic Liouville equation must be solved to obt+in G(W). However, in the 
FFM, instead of attempting an exact solution of the complete equation for G(o), the 
lineshape calculation is initially performed by treating the electron collisions as impacts 
and the ion perturbation as quasi-static. The time dependence is introduced at a later stage 
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of the calculation. The result of this initial assumption is that the quantum emitter system 
evolution operator in eq.(2), contains in the Liouville operator a non-Hermitian, 
homogeneous electron impact broadening contribution, which is numerically averaged 
over the ion microfield interaction with a stationary field probability distribution. For 
each radiative transition, this procedure yields a spectral lineshape function that can be 
written as a sum of rational fractions or generalized Lorentzian spectral components of 
the line [2]. These are the static Stark components, each of which is characterized by a 
complex frequency and intensity. They are complex, because of the non-Hermitian 
collision operator, used to describe the impact electrons. 

The Stark components are the basic data for-the FFM, but are not necessarily 
distinct or observable quantities. To reduce the computation to a more manageable size, 
appropriate for the later introduction of time dependence in the Stark interaction, we 
introduce the radiative channels, a set of objects having more physical meaning. These 
are defined as the smallest observable resonant features that can be extracted from the 
quasi-static profile. As defined, an FFM radiative channel also can be considered as 
equivalent to a two-level transition dressed by the quasi-static ion microfield interaction, 
the Stark dressed transition (SDT). The SDT substitution is accomplished through a 
numerical coarse-graining analysis in the frequency-linewidth space of the Stark 
component set and is equivalent to a numerical merging procedure that combines the 
Stark components that are within a prescribed neighborhood. This procedure preserves 
the inhomogeneous structure of each Stark broadened radiative transition as well as that 
due to the various radiative transitions that are in the spectral domain of interest. The 
SDT are the fundamental observable components of the quasi-static lineshape. Like the 
primitive Stark components, each SDT is characterized by two complex numbers. These 
are the generalized frequency, fi - iy,, and the generalized intensity, ai + ici. The linear 
response lineshape function for a given transition with n SDT can be written in this 
approximation as a sum over the SDT, 

,(~)=~~i(~-~i)+~iYi . 

i=* (0-ffi)2 +r’ 
(3) 

It has been shown by direct comparison, that the change in I(a) is insignificant 
when these distinct radiative channels are introduced to replace the primitive Stark 
components. 

III Model 
The FFM is based on the premise that a quantum system perturbed by an electric 

microfield behaves like a set of dressed two-level transitions, the SDT. If the ion 
microfield is time varying, then the set of transition-e subject to a collision-type 
mixing process induced by the field fluctuations. To iroceed, the Liouville space of these 
two-level dressed emitters is extended to include the SDT index so that the basis set of 
eigenvectors in this space, { I eg;i)) }, are now labeled by the quantum states of the 
emitters, (e,g), and, in addition, by the channel number. In this( space, we can rewrite the 
linear response lineshape function of eq.(3) in terms of dressed two level radiators by 
defining a generalized dipole moment matrix element, (Di),,, for the i” SDT. This can be 
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done by relating the amplitude of the SDT dipole moment matrix element to the intensity 
of the transition associated with the coupling of the radiation field to e and g, the upper 
and lower levels of the i’” dressed two-level system or radiative channel. The normalized 
matrix element is. 

(4) 

where r = dx is the reduced matrix element of the transition assocuiated with 

the emission of the SDT. This generalized dipole moment matrix element can be 
considered to be the diagonal element of the ith component of a vector operator, D, which 
acts in the extended Liouville space. We also define the probability vector operator, p, 
with element, (pi),,, describing the instantaneous probability of occurrence of a particular 
radiative channel (the i* SDT with upper and lower states, e and, g). This probability is 
determined by the normalized real part of the amplitude or relative intensity of the 
channel, 

pi =ai/r2 . . (5) 

The linear response lineshape of eq.(3), in the quasi-static ion, impact electron 
approximation can now be normalized and written as an average over the initial, and sum 
over the final, SDT in the extended Liouville space as, 

I(O) = ~Cpi(((D~G”(~)/Dpo)))l,, 9 
i,f 

(6) 

where, 

G”(o)= (ccl-Lo)-‘, (7) 

and 1 is the unit operator. The Liouville operator, L,, has a set of eigenfrequencies, 
q = fi - ix, composed of the generalized frequencies and widths of the SDT. The 
Liouville space matrix element of the propagator in eq.(6) is a trace over the SDT states 
which include the emitter-plasma interaction. The ion microfield is considered to be 
quasi-static at this point, so that, in this approximation, the propagator, G”(O), is diagonal 
in the SDT index and the FFM lineshape is a sum of independent contributions from a set 
of generalized Lorentzian terms, or radiative channels. Each independent term in this sum 
is to be associated with the emission from one of the n SDT that interact with the 
radiation field through the generalized dipole mome& D of eq.(4). The next step is to 
extend this formulation to include ion dynamics, i.e. the time dependent effect of a 
fluctuating ion microfield on the spectral line shape. 

The ion dynamics is included in the FFM through the hypothesis that the time 
dependence of the fluctuating ion microfield causes a mixing of the SDT. When only one 
Stark broadened radiative transition is considered at a time, the slowly varying ion Stark 
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effect is assumed to transfer population between different radiative channels. This 
transfer is observed in the absorption or emission spectrum as an exchange mechanism 
which mixes the formerly separate SDT. The degree of deviation from a sum of 
independent Lorentzian lines (the quasi-static specirum) is a measure of the ion 
microfield fluctuation rate. In the next section, the mixing rate of the various level 
populations will be seen to be an observable in the redistribution spectrum. This is not the 
case with an absorption or emission spectrum that depends only on the transition 
amplitudes. In order to guarantee the appropriate limits for slow and fast field fluctuation, 
only SDT that originate from the same radiative transition are included in the mixing 
processes considered in the following. However, to model more general cases than those 
considered here, like those with fine structure levels perturbed by inelastic collisions, an 
exchange process between radiative transitions should be taken into account. 

The exchange mechanism mixing the SDT and associated levels is assumed to be 
a Markov process. Such a process is completely determined by two sets of quantities: the 
instantaneous SDT probability operator, p, with elements defined in eq.(5), and a 
transition rate operator, W. The elements of W are of two types: those that correspond to 
dressed level mixing rates, (W), and those that refer to dressed transition (or coherence) 
mixing rates, (W),. For the linear absorption or emission spectra considered in this 
section, the propagator in eq.(6) is to be calculated in the transition subspace, { I eg ; i)) }, 
where e is the excited and g, the lower state of the SDT. Therefore, the only parameters 
required for the spectrum of a given radiative transition are the elements of p, (pi),, and 
the elements of the coherence mixing rate matrices, (W), or (W),< 

The mixing rate elements represent ion motion effects, and can be parameterized 
by the characteristic microfield fluctuation frequency, V, so that the Markov mixing 
process is determined uniquely by the probability, pi, and fluctuation frequency, V. For 
weakly coupled plasmas, the random ion motion, in general, dominates the collective 
motion and the characteristic fluctuation frequency is no longer the plasma frequency, o,, 
but depends on the ionic thermal velocity, <v> and the average ionic separation, r,,. 
Because of the long range of the Coulomb interaction, even if screened, the microfield at 
the emitter can be considered to be due to a particular configuration of a number of ions. 
To obtain an expression for the characteristic frequency, it will be assumed that the 
correlation is interrupted when the configuration changes so that the correlation time can 
be approximated as, v-’ = r&v>. 

The transition rate operator, W, is diagonal in the radiative channel level indices, 
eg, but not in the channel index, i. It has diagonal and off-diagonal elements, (Wi,Gcl, and 
(Wij),, that are, respectively, the inverse lifetime and the rate of mixing of the radiative 
channel transitions. To insure detailed balance in the model, the probability and rate 
elements must be connected, 

7. 

Cwij>q =-v(Pi)eg WjL (Wii)q =vC1-(Pi),l * (8) 
The linear response lineshape resulting from the stoch&tic mixing of the radiation 

channels can be written in the Liouville space of the dressed two-level radiators in the 
same form as eq.(6), but with G”(o) replaced by, 
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i&(w)= (w-l-Lo +iW)-l. (9) 

The diagonal operator, L,, is that of eq.(7) with the same SDT eigenfrequencies, 
q = fi - ix. Since the dressed two-level systems arecoupled together by the exchange 
operator, W, the FFM lineshape is no longer a simple sum of n independent SDT lines. In 
addition, this model has appropriate fluctuation frequency rate limits for the dynamics of 
the ion microfield. The quasi-static limit is obtained for a vanishing fluctuation rate and 
the field free case is recovered in the infinite fluctuation rate limit. As mentioned in the 
introduction, calculations of the spectral lineshape of ion emitters in hot, dense plasmas 
have been performed with the FFM and comparisons with experiments have verified the .- 
accuracy of the theory [3,4,5]. 

IV Results 

The one photon emission or absorption spectroscopy model, described above, is 
extended now to two photon redistribution by continuing the expansion of the response 
function to higher order in the emitter-radiation field interaction [ 171. This is performed 
by obtaining an iterative solution to the equation for the density operator to replace the 
equilibrium solution used in eq.(2). The higher order radiative response functions that 
arise describe either redistribution, where the power spectrum of the fluorescence induced 
by monochromatic pumping radiation is studied [lo], [ 181, or pump-probe phenomena 
where the change of the linear radiative response due to a pump field is considered [ 191. 
In this paper only redistribution will be considered. This approach is based on a previous 
investigation of the fluorescence of simple two or three level atomic systems in a plasma 
[20]. Here we treat complex multi-electron ion emitters and hot and dense plasma 
conditions. The SDT picture permits a simple extension of the FFM to the calculation of 
these higher order response functions. Since the emitter-plasma interaction is 
incorporated in the SDT, the only interaction term in the Liouville propagator for the 
plasma dressed emitter propagator of eq.(9) is the Markov channel mixing process, W. 
By definition, all other interaction terms have been incorporated into the SDT. 

To calculate the spectrum of radiation scattered by an ionic emitter in a plasma, 
the monochromatic laser field will be assumed to have a frequency near one of the ion 
resonances. The interaction is described by the operator, Vs or VL, the field interaction 
operators for the coupling of the spontaneous emission or the incoming pump radiation, 
respectively, with the generalized dipole operator of the SDT. The field interaction 
operators are time dependent and have the form, 

V,(t) = VR+e++* + VieiT, 
1 

where, Vt = D. E$ , is the SDT-radiation field dipole interaction. The field 

amplitude, E,, and frequency, o, = ck,, refer to the pump field for R = L and the 
spontaneous emission field for R = S. * 



The power spectrum of the radiation emitted at frequency os by a system pumped 
at frequency o, can be written [ 171, 

I(%~oL) oc ~~ImCPi(((Vs(G\S(i~)/V,p,)))i,, 2 
i,f 

(11) 

where, Gw (iv) , the Fourier transform of the evolution operator for the SDT, now 
contains in addition, the radiation field dipole interaction in the Liouville operator. As in 
eq.(6), the SDT picture has been used to replace the average over the ion microfield states 
by an average over the initial SDT states with probability, pi, and a sum over the final 
states. 

To remove the explicit time dependence in eq.( 1 l), the Liouville space basis is 
augmented to include Floquet numbers, nL, that count the number of harmonics of the 
pump frequency, %, present in each order of the response calculation. It is also 
generalized to include the photon numbers, ne and ns, for the spontaneous emission or 
absorption at the frequency os by the corresponding SDT [21]. The eigenstates in this 
space are now denoted, I eg; i, n L, ne , n ,)) . The Floquet-photon number operator, Q, is 

diagonal in this basis set with eigenvalues denoted, (nLq + (n,-n&). 

The q+ 0 limit of the propagator in eq.( 11) is written as an operator in this 
extended space as, 

G,@)=[Q-L,+iW-(V,+V,)r’, 

and satisfies the Dyson equation, 

(12) 

6, (Q> = G”,(Q) + G”, (Q(V, + V,)G, (Q) , (13) 

where GO,(a) = (a - Lo + iW)-’ , is the analog of the field-free operator of eq.(9) 
defined in the extended Liouville-Floquet space. In the following, we shall consider only 
those experiments that involve monochromatic pumping intensities with Rabi frequency 
small compared to the relaxation parameters of the emitter. Then, the pump field is 
sufficiently weak that the iteration of the Dyson equation (13) can be terminated at the 
lowest non-vanishing order. The Floquet-photon number matrix element of the 
propagator of eq.( 11) becomes in this approximation, 

I(~s,~,)oc rmCPi(((V,IGU,(w,)(V,G”,~s -~L)VSGO~(-~L) 
i,f 

+V,G~(‘)V,[GO,(O,)+GO,(-W,)]}I~,Po)))i.f. 
(14) 

The first term in the curly bracket above is the Rayleigh scattering line, centered 
on the frequency of the incident radiation, 0~. The second term describes the redistributed 
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radiation and, as will be seen, has a sensitive dependence on the SDT mixing rate 
described by the matrix, W. For this reason, the spectral shape of the redistribution is 
affected more significantly by the mixing action of the microfield fluctuation, the ion 
dynamics, than is the absorption or emission linear response spectral lineshape [ 17, 
19].This ion dynamics effect has not been definiti&ly observed at the present time, 
although there are numerous examples of its suspected presence [22] in spectral data. In 
addition, the validity of the hypothesis that the Markov mixing process in the FFM 
accurately simulates the microfield fluctuations can be carefully examined with 
redistribution experiments. Another assumption which can be validated is that of the 
neglect of inelastic collisions in the impact theory operator describing the electron 
collisions. These inelastic collision rates mix the SDT, and would also appear in the 
propagators as off diagonal elements [23], as do the elements of the transition rate matrix. 
Inelastic electron collisions that couple different states of the levels belonging to the 
radiative transition cause the incident pump radiation to be redistributed to the various 
inhomogeneous components of the line even by a small inelastic collision rate and change 
the shape of the redistribution function. These collisions can also couple the radiative 
transition to states belonging to levels of other transition arrays. This coupling will then 
diminish the intensity of the considered transition and add to that of the coupled 
transition. These collisions, therefore, unlike the ion dynamics mixing, act to depopulate 
a particular set of levels for which the fluorescence is calculated and thereby result in an 
unnormalized redistribution function for that transition [24]. Thus, although, in general, 
the argument that inelastic collision rates can be neglected because they are small 
compared to elastic collision rates can be valid when considering the one photon 
spectrum, it may not be a good approximation for the fluorescence. The shape of the 
redistribution function is, therefore, a measure of the importance of inelastic collisions in 
addition to that of ion dynamics. Finally, it is to be emphasized that the transition matrix, 
W, simulates the mixing effect of the ion microfield fluctuations on the SDT levels and 
transitions and is unrelated to the inelastic electron collisions. For this reason, W does not 
affect the normalization of the redistribution function. 

V Examples of Redistribution 

Simple three and four level radiative systems are considered first in this section to 
illustrate the relevant quantities required for the discussion of radiation redistribution. At 
the end, a physical case will be also considered. To describe the photopumped 
fluorescence, we make use of R(o, , CO,), the redistribution function, defined by 
normalizing, I(o,, o,) of eq.( 14), the distribution of scattered intensity for a system 
perturbed by monochromatic radiation at frequency q. The redistribution function, 

is, thus, the joint probability density for the absorption of a photon of frequency 
CO, and the emission of a photon of frequency cu,. 
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For isolated lines, the redistribution function has been extensively studied and is 
quite well understood including for homogeneously broadened lines [24]. A 
fundamentally different and more complicated problem arises in the situation where 
several radiative transitions must be considered simultaneously. This can occur, for 
example, when two or more lines share the same u&pper level, or whenever two or more 
radiative transitions are coupled by a collision process with a rate high enough to perturb 
the radiation scattering. In both these situations, radiation absorbed by one transition can 
be emitted by the other and the radiative transitions cannot be considered as isolated. 

To treat the general case, we define a conditional function, P(co, , CO, ), in analogy 
with the customary factorization of the redistribution function [24], 

R(o,,cQ =~(qJp@b~s)~ (16) 

where @(CO,) is the normalized absorption lineshape, or the probability 
distribution function for absorbing a photon of frequency CO,. 

For isolated lines, , the conditional function is‘normalized, independent of the 
pump frequency, q, and can be identified with, I, the emission spectral function. 
We thus have for isolated lines, P(u+,ws) = I. The emission spectral function is also 
the conditional probability distribution for observing a photon scattered at orS if a photon 
is absorbed at oL. This also implies that, in this case,-the normalized absorption spectral 
distribution function $(u>, ) = I R(o,, CO, )da, .-In the complete redistribution limit the 

emission function becomes identical to the absorption function, so that the additional 
relation I = @(CO,) holds. The redistribution function for complete redistribution can 
be written, therefore, as a product of normalized absorption lineshape functions, 
W~,m,) = WJON~>. 

In the general case involving coupled transitions, P(o,, CO, ) is not independent of m, is 
not normalized, and cannot be interpreted as the conditional probability density. We treat 
this case by defining II(a,%), as the normalized conditional probability distribution 
function for observing a photon scattered at 0~ if a photon is absorbed at m, 

where, g(cu,), is the normalization factor for a he conditional function, 
. 

(17) 

We now also have, 
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I Wq 3 a, Pa, = 40, )gW, 1, 

and, since the redistribution function is always normalized, 

(19) 

I N% >gtq No, = 1. (20) 

The presence of g(o,) in eq.( 19) is a direct consequence of the incomplete 
redistribution associated with the inhomogeneous spectral structure involved in the 
scattering. If a process mixes the radiative transitions of the resonant pattern, then for 
mixing rates greater than the spontaneous emission rate, g(q) + 1, and 
P(cJ&c@ -+ I = @(CD,), so that the redistributed fluorescence exhibits complete 
redistribution. 

The redistribution function for a group of transitions coupled by a mixing process 
can be illustrated by considering the two transition systems shown in Fig. 1. The indices, e 
and g, denote, respectively, the excited and ground level, and d, and dZ stand for 
arbitrarily chosen dipole moment matrix elements for the transitions with resonant 
frequencies, o, and 0,. For the sake of simplicity it is-supposed that the two transitions 
have an intensity ratio, 2: 1, determined by the choice, d, = & d,, and have Lorentzian 
profiles with identical homogeneous widths, y, related to the electron collision relaxation 
rate. The frequency separation of the two transitions is 6 = (0,~0,)/2. To insure that the 
transitions are overlapping, the frequency separation is taken to be of the same order as 
the homogeneous width. Also, to make the intensity of the Rayleigh peak negligible, the 
spontaneous emission rate, I,, is arbitrarily 
6 = 5y = 5OOl7, in the following example. 

taken to be much smaller, i.e., we take 

I II III 
Fig. 1. Simple two transition systems. Widths and frequencies are such that the two transitions are not 
isolated. 

Since the description of the redistribution process has been limited to second 
order, saturation effects are not included in eq( 14). 9 ere f ore, under this assumption, the 
level configurations of Figs. 1-I and l-11 are equivalent. A Markovian stochastic mixing 
process with a unique fluctuation rate, v is applied to this configuration in order to 
illustrate the effect of line component mixing on the redistribution spectrum. First, 
however, we note that even in the limit of a negligibly weak ekchange process (mixing 
rate much smaller than the spontaneous emission rate), the conditional function, P(cc++Q, 
remains dependent on the pump frequency, q, and the redistribution is not complete. The 
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dependence on o,* can be seen in Fig.2 where the normalization function, g(q), is plotted 
for this configuration. Note that for large detunings from the resonant frequencies, o,, o,, 
the function tends toward unity and the redistribution becomes complete. The v = 0 curve 
of Fig.3b illustrates the behavior of the conditionaLprobability density for this case with 
the pump frequency fixed at one of the resonances. This will be discussed in more detail 
in the following. Finally, the fluorescence in the model, Fig. 1 -III, with lines that share the 
same upper level, always displays complete redistribution. In this situation the pumping 
photon is scattered with the same frequency distribution as the one photon absorption 
function, independent of the pump frequency, so that we have. g(o,)=l . This case can be 
easily modeled by equalizing the level populations in the upper manifolds of eq. 14. _- 

1.2 

1 .o 
- 
3” 
5 

0.8 

0.6 
I I I I 

400 450 500 550 600 650 
*, 

Fig.2 Plot of g in arbitrary units versus q. 

To illustrate the sensitivity of the spectral functions to the component mixing 
associated with the Markovian stochastic process, the configuration of Fig. l-11 is studied 
as a function of the fluctuation rate parameter, v. The behavior with v of the one photon 
absorption function, $(cJ.J), and the two photon conditional probability distribution 
function, II(o,, o,), is depicted in Figures 3a and 3b, respectively. The spectrum of the 
absorption function starts out at small v with the twoqtark components present in the 
defined intensity ratio, 2: 1. With increasing v, the coupling associated with the 
fluctuation process causes the two components to broaden and coalesce. The effect of 
component mixing becomes important when that is when the fluctuation rate is of the 
same order of magnitude as the component separation At this value of v (equal to 6, or 
5OOI,), the two components have completely merged. The behavior is different for the 
two-photon redistributed fluorescence spectrum presented in Fig.3b, which has been 
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calculated for the pump frequency resonant with 0,. Here it can be seen that for a null or 
vanishingly small fluctuation rate, the fluorescence profile consists almost entirely of the 
pumped spectral component and has only a small contribution from the other component, 
arising from the overlapping of the homogeneous widths. Thus, with a small fluctuation 
rate the fluorescence spectrum differs drastically from the absorption profile with the 
same v, indicating that the redistribution is incomplete. Increasing the mixing rate causes 
the unpumped Stark component to grow in intensity relative to the pumped component 
until at large v, the fluorescence and absorption spectral profiles become 
indistinguishable and the redistribution becomes complete. It can be seen in Fig. 3b that 
the fluorescence spectrum becomes identical to the absorption line profile when the 
fluctuation rate is greater than the lifetime of the upper level (V > 50 r,). 

Fig.3a 

Fig. 3a) One photon profile function, $(e), of the transitions in Figure l-II, for five mixing rates of the two 
components..Fig. 3b) Two photon conditional probability distribution function, n(o,, 0, ) , for a fixed 

pump frequency at w = CL+, transitions and fluctuation rates the same as in Fig3. 
The above examples are useful to clarify the principal intuitive concepts, and to 

illustrate the contribution of the various line broadening mechanisms to the redistribution, 
e.g. the homogeneous broadening of the inhomogeneous spectral components and the 
mixing of these components by a dynamic effect. The next example will illustrate the use 
of the redistribution model for the investigation of a more realistic physical case, the 3d- 
2p Balmer alpha transition of hydrogen-like carbon. ?& is has been previously discussed 
in connection with gain studies associated with the development of an X-ray laser [25]. 
Because this transition does not involve the ground state, it is more appropriate for 
studies related to radiation transfer than for a frequency redistributed single scattering 
measurement where the signal intensity would likely be small. We investigate this case 
here because of its simplicity and to illustrate some of the more important elements 

14 



relevant to radiation redistribution. For the, study we assume a plasma with parameters 
such that the electron density, NC=5x1019 cme3 and the electron temperature, T,=lO eV. For 
these plasma conditions, ion dynamics is completely absent, and the spectral 
inhomogeneity of the radiative pattern is associated with the Stark broadened fine 
structure. In Fig. 4, the calculated normalized abso*&tion line shape(the absorption 
probability distribution) for this transition is presented as the gray filled profile for 
comparison with the two distinct homogeneously electron broadened fine structure 
components. The absorption spectrum consists of two resonances which are the result of 
the ion Stark effect broadening and merging the two resonances. 

103.4 103.5 

co (1015 rad/s) 

103.6 103.7 

Fig. 4, Absorption profile for the 3d-2p Balmer alpha lines N,=5.10” cmm3 T,=lOeV: dotted curve, 
absorption profile electron alone (homogeneous broadening) - solid curve, electrons and ions. 

The redistribution dependence on the pump frequency, is given in Fig. 5, where 
the normalized two photon conditional probability density, II(o,, ws), is calculated for 
three different pump frequencies, q. The absorption %.I nction, Cp(Q, and is plotted on the 
same graph for comparison. Two of the pump frequencies are chosen to coincide with the 
unshifted frequencies of the fine structure components at 182.25 A and 182.11 A (0, = 
103.43~10’~ rad/s and 6~~ = 103.51~10” rad/s). The third pumpfrequency at 103.68~10’~ 
rad/s, has a detuning of -0.3 1 A from the tiZresonance peak. It is clear from a comparison 
of the absorption profile with the conditional probability density in Fig.5 that the 
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redistribution is partial for pumping near the resonances. This is to be expected, in this 
case, because ion dynamics is absent for the plasma conditions chosen. The conditional 
probability distribution tends toward the absorption probability density profile (complete 
redistribution) as the detuning from the resonances becomes large. 4 

I I I I I 
I 

ii . 
r 

c- WQ 
-----qy 

w-m O,=O, 

- - - - - co,-=1 03.68 

Fig. 5 The absorption profile, $(a~), and conditional probability distribution function, n(6I,, as), for 
the3d-2p Balmer alpha line of CN in a plasma with Ne=5.101’ cme3, T==lOeV. The absorption profile is 
indicated by the solid filled curve, and the calculations for three pump frequencies are denoted: dot-dash 
profile, 0, = 0, = 103.43~10’~ rad/s (182.11 A), dash profile, o, = ~2 = 103.51~10’~ rad/s (182.25 A), and, 
dotted profile, q = 103.68~10’~ rad/s (181.8 A) 

The gray filled profile is the absorption function, $(o,), and is plotted on the same 
graph for comparison. Two of the pump frequencies are chosen to coincide with the fine 
structure components at o, = 103.44~10’~ rad/s anqt>, = 103.52~10~~ rad/s, and the third 
pump frequency has a detuning of -0.3 1 8, from the%, resonance peak. It is clear from a 
comparison of the absorption profile with the conditional probability density in Fig.5 that 
the redistribution is partial for pumping near the resonances. This is to be expected, in 
this case, because ion dynamics is absent for the plasma conditions chosen. 
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Finally, the two dimensional redistribution function, R(o, ,o, ) , is given in Fig.6. 

Fig. 6 Three-dimensional plot of the redistribution function R(w, , 0, ) 

This surface represents the frequency dependent resonance radiation redistribution 
function for the CJV Balmer a transition in a hot, dense plasma that is the required input 
for the radiation transfer equation. 

VI Discussion 

The FFM approach, which has been used successfully in the past to provide 
complex ionic absorption or emission spectral lineshapes for emitters in hot, dense 
plasmas, has been extended here to enable calculations of radiative redistribution. The 
system of dressed two-level emitters or SDT defined in the FFM includes the partial 
inhomogeneities of the line broadening process, and constitutes the important 
simplification that permits a straightforward extension to different plasma conditions, 
laser pump frequencies, and ionic emitters. Relatively uncomplicated calculations of the 
photopumping of complex multi-electron ionic systems can be performed with the 
method presented. Saturation effects for large Rabi frequencies such as those related to 
the AC Stark effect splitting of lines were excluded, but could easily be handled within 
the framework of the present calculations. The computational method developed 
constitutes a powerful new tool for the investigatiov radiative transport in plasmas. In 
particular, for the study of the ion dynamics effect, redistribution provides a more 
sensitive probe than the one photon spectra of the FFM. In particular, the study of the 
effect of the fluctuating microfrelds or ion dynamics on the redistribution of incident 
resonance radiation requires plasma conditions for which the line transitions have 
substantial ion Stark broadening. This often dominates the one photon spectral line 
profile, obscuring the perturbative effects of the microfield fluctuations. However, the 

17 



spectral content of the redistribution function for the same transition has been shown to 
be more sensitive to the ion dynamics effect. Related to this are possible investigations 
that, for the first time, would permit radiative transfer to be studied for plasma conditions 
where a sufficiently slow mixing of inhomogeneous spectral line components results in a 
partial redistribution. 

As an application of the theory, the feasibility of a photopumping experiment, 
targeting a resonance between the 3d-2p line of Mg IV (146.526 A) and a Zr X-ray laser 
line at 146.515& was calculated and has been published elsewhere [lo]. The plasma 
conditions used in that calculation were limited to the study of only ground state 
transitions of a weakly ionized emitter and also by the available X-ray laser wavelengths. 
For these plasma parameters, ion Stark broadening-is a small contribution to the line 
profile, and, therefore ion dynamics is negligible. Nevertheless, an experimental study of 
the redistribution function was shown to be feasible. The pumping efficiency and 
fluorescence yield are such that even with a high-resolution spectrometer, the 
fluorescence photons would be observable. The Mg IV line is composed of a number of 
overlapping fine structure transitions and Stark components, yielding a resonance 
fluorescence spectrum that is sensitive to the photopumping of particular inhomogeneous 
components. This is more evident at lower plasma electron density where the 
homogeneous broadening does not merge the fine structure into a single resonance, but 
also at higher electron density, a subtle difference from complete redistribution 
attributable to the inhomogeneous nature of the transition has been shown to exist. 

Experiments, such as that discussed in ref.[lO] where partial redistribution is 
predicted because of the fine structure inhomogeneity, are of experimental interest due to 
the possibility of testing the basic assumptions in traditional line shape theories. One 
example is the assumption that inelastic collisions can be ignored, which results in the 
prediction that there can be no fluorescence from unpumped states. Thus, in plasmas with 
kinetics are such that inelastic collisions are significant, this would manifest itself as an 
additional fluorescence component from these states. The intensity of these additional 
components would be a measure of the contribution of the inelastic collisions to the 
redistribution process. A second example of a critical test redistribution experiments 
could provide is found in the standard Stark broadening theory assumption that the ions 
are static and the electrons impact. This hypothesis results in a spectrum with distinct 
Stark components that merge under common plasma conditions. At present, no 
observation of the merged individual components, which compose the spectral line 
profile, has been possible. A redistribution experiment could result in a measurement of 
these inhomogeneous components and would be a simple confirmation of this basic 
theoretical line broadening concept. Cases, which could have observable redistribution 
spectra with interesting plasma conditions are under active investigation at present. There 
is a narrow range of plasma conditions, however, that give rise to partial redistribution 
due to an ion Stark effect, so that an experimental o ii3 ervation of this effect will remain a 
difficult problem. 
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